
If it's an irregular shape, you can try to do the very thing that caused Archimedes to shout the famous word Eureka! Probably you heard that story - Archimedes was asked to find out if the Hiero's crown is made from pure gold or just gold-plated - but without bending or destroying it. For a right triangular prism, the equation can be easily derived, as well as for a right rectangular prism, which is apparently the same shape as a box.įor regular three-dimensional objects, you can easily calculate the volume by taking measurements of its dimensions and applying the appropriate volume equation. Prism = A h Ah A h, where A A A is a base area and h h h is the height. For a pyramid with a regular base, another equation may be used as well: Pyramid = ( n / 12 ) h s 2 cot ( π / n ) (n/12) h s^2 \cot(\pi/n) ( n /12 ) h s 2 cot ( π / n ), where n n n is a number of sides s s s of the base for a regular polygon.

Pyramid = ( 1 / 3 ) A h (1/3)Ah ( 1/3 ) A h where A A A is a base area and h h h is the height. Rectangular solid (volume of a box) = l w h lwh lw h, where l l l is the length, w w w is the width and h h h is the height (a simple pool may serve as an example of such shape). Sphere = ( 4 / 3 ) π r 3 (4/3)\pi r^3 ( 4/3 ) π r 3, where r r r is the radius.Ĭylinder = π r 2 h \pi r^2h π r 2 h, where r r r is the radius and h h h is the height.Ĭone = ( 1 / 3 ) π r 2 h (1/3)\pi r^2h ( 1/3 ) π r 2 h, where r r r is the radius and h h h is the height.

Here are the formulas for some of the most common shapes:Ĭube = s 3 s^3 s 3, where s s s is the length of the side.

There is no simple answer to this question, as it depends on the shape of the object in question.
